3.240 \(\int \frac{1}{\sqrt{-1+x^2} \sqrt{2+3 x^2}} \, dx\)

Optimal. Leaf size=32 \[ \frac{\sqrt{1-x^2} \text{EllipticF}\left (\sin ^{-1}(x),-\frac{3}{2}\right )}{\sqrt{2} \sqrt{x^2-1}} \]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[x], -3/2])/(Sqrt[2]*Sqrt[-1 + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0132576, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {421, 419} \[ \frac{\sqrt{1-x^2} F\left (\sin ^{-1}(x)|-\frac{3}{2}\right )}{\sqrt{2} \sqrt{x^2-1}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-1 + x^2]*Sqrt[2 + 3*x^2]),x]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[x], -3/2])/(Sqrt[2]*Sqrt[-1 + x^2])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-1+x^2} \sqrt{2+3 x^2}} \, dx &=\frac{\sqrt{1-x^2} \int \frac{1}{\sqrt{1-x^2} \sqrt{2+3 x^2}} \, dx}{\sqrt{-1+x^2}}\\ &=\frac{\sqrt{1-x^2} F\left (\sin ^{-1}(x)|-\frac{3}{2}\right )}{\sqrt{2} \sqrt{-1+x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0208477, size = 32, normalized size = 1. \[ \frac{\sqrt{1-x^2} \text{EllipticF}\left (\sin ^{-1}(x),-\frac{3}{2}\right )}{\sqrt{2} \sqrt{x^2-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-1 + x^2]*Sqrt[2 + 3*x^2]),x]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[x], -3/2])/(Sqrt[2]*Sqrt[-1 + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 37, normalized size = 1.2 \begin{align*}{-{\frac{i}{3}}{\it EllipticF} \left ({\frac{i}{2}}x\sqrt{6},{\frac{i}{3}}\sqrt{6} \right ) \sqrt{3}\sqrt{-{x}^{2}+1}{\frac{1}{\sqrt{{x}^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2-1)^(1/2)/(3*x^2+2)^(1/2),x)

[Out]

-1/3*I*EllipticF(1/2*I*x*6^(1/2),1/3*I*6^(1/2))*(-x^2+1)^(1/2)*3^(1/2)/(x^2-1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 \, x^{2} + 2} \sqrt{x^{2} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2)/(3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(3*x^2 + 2)*sqrt(x^2 - 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{3 \, x^{2} + 2} \sqrt{x^{2} - 1}}{3 \, x^{4} - x^{2} - 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2)/(3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(3*x^2 + 2)*sqrt(x^2 - 1)/(3*x^4 - x^2 - 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\left (x - 1\right ) \left (x + 1\right )} \sqrt{3 x^{2} + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**2-1)**(1/2)/(3*x**2+2)**(1/2),x)

[Out]

Integral(1/(sqrt((x - 1)*(x + 1))*sqrt(3*x**2 + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 \, x^{2} + 2} \sqrt{x^{2} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2-1)^(1/2)/(3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(3*x^2 + 2)*sqrt(x^2 - 1)), x)